Subject CM1 Formula Sheet

Introduction

This document summarises some of the important formulae required in the Subject CM1 exam. This document is not an exhaustive list. Students ought to be able to evaluate assurances and annuities through integration methods where appropriate. The formulae associated with these integration methods are not provided here.

Space has been left in the margins allowing students to add their own notes as studies progress.

Where appropriate, formulae are provided referencing the three tables in the Formulae and Tables for Actuarial Examinations:

- ELT15, page 67
- AM92, page 73
- PMA92 and PFA92, page 109

Note that the mortality tables listed above do not include the same information. *Generally speaking* ELT15 and AM92 are used for single life annuities / assurances, where PMA92 and PFA92 are used for joint life annuities/assurances. As students progress through their studies, other smaller nuances with regards to the tables ought to become clear.

Last updated: 22nd October 2024

0 Financial mathematics basics

0.1 Rates of interest / discount / force of interest

Symbol	Meaning	Calculation Method
;	Effective rate of interest (<i>i</i> may also be used	n/a
Ι	for simple interest)	11/a
·(p)	Rate of interest convertible pthly. This is not	$i^{(p)} = p[(1+i)^{1/p} - 1]$
1107	an effective rate	$I^{*} = p[(1+1)^{*} - 1]$
	Effective discount factor	$\left(\begin{array}{c} 1 \\ \end{array}\right)$ or $\left(1-d\right)$
V		$\begin{pmatrix} 1+i \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \end{pmatrix}$
d	Effective rate of discount	$\begin{pmatrix} i \\ \end{pmatrix}$ or $(1, y)$ or (iy)
а		$\left(\frac{1+i}{1+i}\right)$ of $(1-i)$ of (ii)
(q)،	Rate of discount convertible pthly. This is not	$q(p) = p[1 + i)^{-1/p}$
a	an effective rate	$a^{-1} = p[1 - (1+1)^{-1}]$
δ	Force of interest	Ln(1+i)

0.2 Level annuity certain

Symbol	Meaning	Calculation Method
	PV of annuity certain payable in arrears	1 1
$a_{\overline{n}}$	Present value of payments of 1 made at the	$\frac{1-v}{\cdot}$
	end of each year for n years	1
	PV of annuity certain payable in advance	
ä _n	Present value of payments of 1 made at the	$\frac{1-v}{i} = (1+i)a_{\overline{n}}$
	start of each year for n years	d m
	PV of annuity certain payable continuously	
$\overline{a}_{\overline{n}}$	Present value of payments of 1 made	$\frac{1-v^{n}}{2}$
	continuously each year for n years	ð
	AV of annuity certain payable in arrears	
s _n	Accumulated value of payments of 1 made at	$\frac{(1+i)^n - 1}{i} = (1+i)^n a_{\overline{n}}$
	the end of each year for n years	1
	AV of annuity certain payable in advance	
; s _n	Accumulated value of payments of 1 made at	$\frac{(1+i)^n - 1}{2}$
	the start of each year for n years	d
	AV of annuity certain payable continuously	(1.1.1)
<i>s</i> _n	Accumulated value of payments of 1 made	$\frac{(1+i)^{2}-1}{2}$
	continuously each year for n years	ð

Note: when there is no possibility of confusion with a life annuity, the term 'annuity' can be used as an alternative to annuity certain.

0.3 Increasing annuity certain

Symbol	Meaning	Calculation Method
	PV of an increasing annuity certain payable in	_
(<i>Ia</i>)	arrears	$\ddot{a}_{\overline{n}} - nv^n$
` 'n	Present value of increasing payments made at	
	the end of each year for n years	
	PV of an increasing annuity certain payable in	
(<i>lä</i>),	advance	$\ddot{a}_{\overline{n}} - nv^n$
` 'n	Present value of increasing payments made at	d
	the start of each year for n years	
	PV of an increasing annuity certain payable	
	continuously throughout the year	
	Present value of increasing payments, where	
	the payment is made continuously throughout	
	the year, for n years	
(I <u>a</u>)_	Rate of pmt	$\ddot{a}_n - nv^n$
	3 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	δ
	PV of a continuously increasing annuity certain	
	continuously throughout the year	
	Present value of a continuously increasing	
	payment, where the payment is made	
	continuously throughout the year, for n years	
(\overline{Ia})	Rate of pmt	$\overline{a_n} - nv^n$
(10) _n	t Time	<u></u>

0.4 Pthly payable annuity certain

Symbol	Meaning	Calculat	tion Method
	PV of annuity certain payable pthly in		Where:
$a^{(p)}$	arrears	$1-v^n$	$(n)^p$
n	Present value of payments of 1 pa, payable	$\frac{1}{i^{(p)}}$	$1 + \frac{i^{(p)}}{2} = (1+i)$
	pthly in arrears		(<i>p</i>)
	AV of annuity certain payable pthly in		
$s^{(p)}$	arrears	$(1+i)^n - 1$	$i^{(p)} = p \left[(1+i)^{1/p} - 1 \right]$
'n	Accumulated value of payments of 1 pa,	i(p)	
	payable pthly in arrears		
	PV of annuity certain payable pthly in		Where:
$\ddot{a}^{(p)}$	advance	$1-v^n$	(a)
n	Present value of payments of 1 pa, payable	$d^{(p)}$	$ 1 - \frac{d^{d-1}}{d} = (1 - d)$
	pthly in advance		(<i>p</i>)
	AV of annuity certain payable pthly in		
(n)	advance	$(1+i)^n - 1$	$d^{(p)} = p \left[1 - (1 - d)^{1/p} \right]$
$\frac{S(p)}{n}$	Accumulated value of payments of 1 pa	$\frac{(1+1)}{d(p)}$	
	payable pthly in advance	<i>u</i> ,	$= p \left[1 - (1+i)^{-1/p} \right]$

1 Life probabilities

Symbol	Meaning	Calculation Method
$_t q_x$	Probability that a life aged <i>x</i> dies in the next <i>t</i> years	$_{t}q_{x} = 1 - \frac{l_{x+t}}{l_{x}} = \frac{l_{x} - l_{x+t}}{l_{x}}$
q_{x}	Probability that a life aged <i>x</i> dies in the next 1 year	$q_x = d_x / l_x$
$_t p_x$	Probability that a life aged <i>x</i> survives the next <i>t</i> years	${}_{t}p_{x} = \frac{I_{x+t}}{I_{x}}$
p _x	Probability that a life aged <i>x</i> survives the next 1 year	$1-q_x$ or use $p_x = I_{x+1}/I_x$
n t q _x	Probability that a life aged <i>x s</i> urvives the next <i>n</i> years, but then dies in the subsequent <i>t</i> years	$n p_{x} \times t q_{x+n}$ $= n p_{x} - n + t p_{x} \text{ or } n + t q_{x} - n q_{x}$ $= \frac{I_{x+n} - I_{x+n+t}}{I_{x}}$
n q _x	Probability that a life aged <i>x</i> survives the next <i>n</i> years, but then dies in the subsequent 1 year	$=\frac{I_{x+n}-I_{x+n+1}}{I_x}=\frac{d_{x+n}}{I_x}$

2 Assurances

2.1 Level Life Assurances (payments at end of the year)

Symbol	Meaning	Calculation method
A _x	Whole of Life Lump sum paid at end of year of death of a life aged x exact	Using AM92, tabulated at 4% and 6% Using PMA92/PFA92 then $A_x = 1 - d\ddot{a}_x$
	Term Assurance Lump sum at end of year of death of a life aged x exact, only if life dies within n years	$A_{x:n}^{1} = A_{x:n} - A_{x:n}^{1}$ $= A_{x:n} - v^{n} p_{x}$ Using AM92, if x+n=60 or 65, then $A_{x:n}$ is tabulated at 4% and 6%. If not, then: $A_{x} - v^{n} p_{x} A_{x+n}$ Using PMA92/PFA92 then use formulas as above, calculating $A_{x} = 1 - d\ddot{a}_{x}$
$A_{x:n}^{1}$	Pure Endowment Lump sum at end of term if a life aged x exact survives term of n years	Using AM92, and PMA92/PFA92: $v^n {}_n p_x$ Using AM92 at 4%: D_{x+n}/D_x
A _{x:n}	Endowment Assurance Lump sum at end of year of death of life aged x exact, if life dies within n years. If life survives, then payment at time n	$A_{x:n}^{1} + A_{x:n}^{1}$ $= A_{x} - v^{n} p_{x}A_{x+n} + v^{n} p_{x}$ Using AM92, if x+n=60 or 65, then $A_{x:n}$ is tabulated at 4% and 6% Using PMA92/PFA92 then use formulas as above, calculating $A_{x} = 1 - d\ddot{a}_{x:n}$
n A _x	Deferred whole of Life Lump sum paid at end of year of death of life aged x exact, provided life survives first n years.	v ⁿ _n p _x A _{x+n}
$m A_{x:n}^1 $	Deferred Term Assurance Lump sum at end of year of death of life aged x exact, only if life dies within n years, starting after m years, provided life survives first m years	$v^m{}_m p_x A^1_{x+m:n}$

Symbol	Meaning	Calculation method
Ā _x	Whole of Life Lump sum paid immediately on death of	$\overline{A}_x \simeq (1+i)^{0.5} A_x$ Using A_x formula on previous page
	Term Assurance Lump sum paid immediately on death of x, only if life within n years	$A_{x} \simeq 1 - \delta a_{x}$ $\overline{A}_{x:n}^{1} \simeq (1+i)^{0.5} A_{x:n}^{1}$ Using $A_{x:n}^{1}$ formula on previous page
Ā _{x:n}	Endowment Assurance Lump sum paid immediately on death of x, if life dies within n years. If life survives, then payment at time n	$\overline{A}_{x:n}^{1} + A_{x:n}^{1} \simeq (1+i)^{0.5} A_{x:n}^{1} + v^{n} {}_{n} p_{x}$ Using $A_{x:n}^{1}$ formula on previous page $\overline{A}_{x:n} \simeq 1 - \delta \overline{a}_{x:n}$
n Āx	Deferred whole of Life Lump sum paid immediately on death of x, provided life survives first n years.	$v^{n}{}_{n}p_{x}(1+i)^{0.5}A_{x+n}$
$m \overline{A}_{x:n}^{1} $	Deferred Term Assurance Lump sum paid immediately on death of x, only if life dies within n years, starting after m years, provided life survives first m years	$v^m{}_m p_x \overline{A}^1_{x+m:n}$

2.2 Level Life Assurances (payable immediately)

2.3 Simple Increasing Life Assurances (payable at end of the year of death)

Symbol	Meaning	Calculation method
(IA) _x	Whole of Life Increasing lump sum paid at the end of year of death of x	Using AM92, this is tabulated at 4% and 6%
(IA) ¹ _{x:n}	Term Assurance Increasing lump sum paid at the end of year of death of x, only if life within n years	Using AM92 at 4% and 6% $(IA)_{x} - v^{n} {}_{n} p_{x} [(IA)_{x+n} + nA_{x+n}]$
(IA) _{x:n}	Endowment Assurance Increasing lump sum paid at the end of year of death of x, if life dies within n years. If life survives, then payment of n at time n	Using AM92 at 4% and 6%: $(IA)_{x:n}^{1} + nA_{x:n}^{1}$ $= (IA)_{x} - v^{n} {}_{n}p_{x} [(IA)_{x+n} + nA_{x+n}]$ $+ nv^{n} {}_{n}p_{x}$
_n (IA) _x	Deferred Whole of Life Increasing lump sum paid at the end of year of death of x, provided life survives first n years.	v ⁿ _n p _x (IA) _{x+n}

2.4 Simple Increasing Life Assurances (payable immediately on death)

Symbol	Meaning	Calculation method
(<i>I</i> Ā) _x	Whole of Life Increasing lump sum paid immediately on death of x	Using AM92 at 4% and 6% $\simeq (1+i)^{0.5} (IA)_x$
(IĀ) ¹ _{x:n}	Term Assurance Increasing lump sum paid immediately on death of x, only if life within n years	Using AM92 at 4% and 6% $\approx (1+i)^{0.5} (IA)^{1}_{x:n}$ $= (1+i)^{0.5} \Big[(IA)_{x} - v^{n} {}_{n} p_{x} ((IA)_{x+n} + nA_{x+n}) \Big]$
(IĀ) _{x:n}	Endowment Assurance Increasing lump sum paid immediately on death of x, if life dies within n years. If life survives, then payment of n at time n	Using AM92 at 4% and 6%: $\approx (1+i)^{0.5} (IA)^{1}_{x:n} + nv^{n} {}_{n}p_{x}$ $= (1+i)^{0.5} \Big[(IA)_{x} - v^{n} {}_{n}p_{x} ((IA)_{x+n} + nA_{x+n}) \Big]$ $+ nv^{n} {}_{n}p_{x}$
_n (IA) _x	Deferred Whole of Life Increasing lump sum paid immediately on death of x, provided life survives first n years.	$v^n {}_n p_x (I\overline{A})_{x+n}$

3 Annuities

3.1 Level Life Annuities (annual payments at start / end of year)

Symbol	Meaning	Calculation method
ä _x	Whole life immediate annuity-due Regular payments in advance as long as life is alive	Using AM92, tabulated at 4% and 6% Using PMA92/PFA92, tabulated at 4%
a _x	Whole life immediate annuity Regular payments in arrears as long as live is alive	<i>ä</i> _x −1
		Using AM92, if x+n=60 or 65, then $\ddot{a}_{x,\overline{n}}$ is
ä _{x:n}	Temporary immediate annuity-due Regular payments in advance during term as long as life is alive, up to n years	tabulated at 4% and 6% If not, then using AM92 or PMA92/PFA92, can be calculated:
		$a_x - v_n p_x a_{x+n}$
a _{x:n}]	Temporary immediate annuity Regular payments in in arrears during term as long as life is alive, up to n years	Using AM92, if x+n=60 or 65, then $a_{x:n}$ can be calculated as: $\ddot{a}_{x:n} - (1 - v^n {}_n p_x)$ If not, then using AM92 or PMA92/PFA92, can be calculated: $a_x - v^n {}_n p_x a_{x+n}$ $= (\ddot{a}_x - 1) - v^n {}_n p_x (\ddot{a}_{x+n} - 1)$
	Guaranteed annuity-due Whole of life immediate annuity-due with n years guaranteed	\ddot{a}_{n} + $v^{n}_{n}p_{x}\ddot{a}_{x+n}$
	Guaranteed annuity Whole of life immediate annuity in arrears with n years guaranteed	$a_{\overline{n}}$ + $v_{n}^{n}p_{x}a_{x+n}$
n äx	Deferred whole life annuity-due Regular payments in advance as long as life is alive, provided life survives first n years.	v ⁿ _n p _x ä _{x+n}
$n a_x$	Deferred whole life annuity Regular payments in arrears as long as life is alive, provided life survives first n years.	$v_n^n p_x a_{x+n}$

Symbol	Meaning	Calculation method
\overline{a}_{x}	Whole life continuous immediate annuity <i>Continuous payments as long as life is alive</i>	$\simeq \ddot{a}_x - \frac{1}{2}$
ā _{x:n}	Temporary continuous immediate annuity Continuous payments made as long as life is alive, up to n years	Using AM92, if x+n=60 or 65, then $\overline{a}_{x:n}$ can be calculated as: $\approx \ddot{a}_{x:n} - \frac{1}{2}(1 - v^n {}_n p_x)$ If not, then using AM92 or PMA92/PFA92, can be calculated: $\approx \ddot{a}_x - v^n {}_n p_x \ddot{a}_{x+n} - \frac{1}{2}(1 - v^n {}_n p_x)$
ā	Guaranteed continuous immediate annuity Continuous payments as long as life is alive, with n years guaranteed	\overline{a}_{n} + $v^{n}_{n}p_{x}\overline{a}_{x+n}$
$ \overline{a}_x $	Deferred whole life continuous annuity Continuous payments as long as life is alive, provided life survives first n years.	$v^n{}_np_x\overline{a}_{x+n}$

3.2 Level Life Annuities (continuous annual payments)

3.3 Simple Increasing Life Annuities (annual payments at start / end of year)

Symbol	Meaning	Calculation method
	Increasing life immediate annuity-due	
(la) _x	Increasing regular payments in advance	Using AM92, this is tabulated at 4% and 6%
	as long as life is alive	
	Increasing life immediate annuity	
(Ia) _x	Increasing regular payments in arrears	$(l\ddot{a})_{x}-\ddot{a}_{x}$
	as long as live is alive	
	Increasing temporary immediate	
	annuity-due	
(Iä) _{x:n}	Increasing regular payments in advance	$(l\ddot{a})_{x} - v^{n}_{n}p_{x}[(l\ddot{a})_{x+n} + n\ddot{a}_{x+n}]$
	during term as long as life is alive, up to	
	n years	
	Increasing temporary immediate	
	annuity	
(Ia) _{x:n}	Increasing regular payments in arrears	$(la)_{x} - v^{n}_{n} p_{x}[(la)_{x+n} + na_{x+n}]$
	during term as long as life is alive, up to	
	n years	
	Deferred increasing life annuity-due	
(lä)	Increasing regular payments in advance	
nl(10)x	as long as life is alive, provided life	$V^{*}{}_{n}p_{x}(la)_{x+n}$
	survives first n years	
	Deferred increasing life annuity	
.(Ia)	Increasing regular payments in arrears	n = n
	as long as life is alive, provided life	$v_n p_x (la)_{x+n}$
	survives first n years	

3.4 Simple Increasing Life Annuities (continuous annual payments)

Symbol	Meaning	Calculation method	
	Increasing life immediate continuous		
(Iā) _x	annuity	$\simeq (l\ddot{a})_x - \frac{1}{2}\ddot{a}_x$	
	Increasing regular payments payable		
	continuously as long as life is alive		
(Iā) _{x:n}	Increasing temporary immediate	$(I\overline{a})_{x} - v^{n}_{n}p_{x}[(I\overline{a})_{x+n} + n\overline{a}_{x+n}]$	
	continuous annuity		
	Increasing regular payments payable		
	continuously as long as live is alive, up		
	to n years		
_n (Iā) _x	Deferred increasing life continuous		
	annuity	$v^n_n p_x (l\overline{a})_{x+n}$	
	Increasing regular payments payable		
	continuously as long as life is alive,		
	provided life survives first n years		

3.5 Annuities payable non-annually

Note that some of the below formulae can be seen on page 36 of Formulae and Tables for Actuarial Examinations.

Symbol	Meaning	Calculation method
··(p)	Whole life immediate annuity-due	
	payable pthly	~ ;; _ (p-1)
$a_X^{\prime\prime}$	Regular payments payable pthly in	$=u_{x}-\frac{1}{2p}$
	advance as long as life is alive	
	Whole life immediate annuity payable	
$\alpha(p)$	pthly	$\sim a + \frac{(p-1)}{2} - \ddot{a} - \frac{(p+1)}{2}$
u_X^{*}	Regular payments payable pthly in	$-u_x + 2p - u_x + 2p$
	arrears as long as life is alive	
	Temporary immediate annuity-due payable pthly Regular payments payable pthly in advance during term as long as life is alive, up to n years	Using AM92, if x+n=60 or 65, then $\ddot{a}_{x:n}$ is
		tabulated at 4% and 6%
$\ddot{a}_{x:n}^{(p)}$		$\simeq \ddot{a}_{x:\overline{n}} - \frac{p-1}{2p} \left(1 - v^n {}_n p_x \right)$
		If not, then using AM92 or PMA92/PFA92,
		can be calculated:
		$\ddot{a}_{x:n}^{(p)} = \ddot{a}_{x}^{(p)} - v^{n} {}_{n} p_{x} \ddot{a}_{x+n}^{(p)}$
		Using AM92, if x+n=60 or 65, then $\ddot{a}_{x:\overline{n}}$ is
	Temporary immediate annuity payable	tabulated at 4% and 6%
	pthly	$\approx \ddot{a} \qquad p+1(1, y^n, p)$
$a^{(p)}$	Regular payments payable pthly in	$= u_{x:n} - \frac{1}{2p} \left(1 - v_n P_x \right)$
x:n	arrears during term as long as life is	If not, then using AM92 or PMA92/PFA92,
	alive, up to n years	can be calculated:
		$a_{x:n}^{(p)} = a_x^{(p)} - v_n^n p_x^n a_{x+n}^{(p)}$
··(n)	Guaranteed annuity-due payable pthly	$r_{1}(p) = p - r_{1}(p)$
$a\frac{(p)}{x:n}$	Whole of life immediate annuity-due	$\ddot{a}_{n}^{(p)} + v''_{n} p_{x} \ddot{a}_{x+n}^{(p)}$
	payable pthly with n years guaranteed	
	Guaranteed annuity payable pthly	
$a^{(p)}$	Whole of life immediate annuity in	$a^{(p)}_{\neg} + v^n_{\ \ n} p_x a^{(p)}_{x+n}$
x:n	arrears payable pthly with n years	n m a a m
	guaranteed	
	Whole life deferred annuity-due	
(p)	payable ptniy	$n \cdot \cdot \cdot (n)$
	Regular payments payable pinly in	$V^{n}_{n}p_{x}a_{x+n}^{(p)}$
	life survives first a vegre	
	Nholo life deferred enquity neuching	
$_{n }a_{x}^{\left(ho ight) }$	orthu	
	Regular navments navable othly in	n - (p)
	arrears as long as life is alive provided	$v_n \mu_x a_{x+n}^{*}$
	life survives first n vegrs	
	nje sulvives jilst li yeurs	

Symbol	Meaning	Calculation Method	
tq _{xy}	Probability that the joint life status fails		
	within <i>t</i> years, <i>ie</i> the probability that at	$1 - t p_x t p_y$	
	least one of <i>x</i> and <i>y</i> dies in next <i>t</i> years		
t	Probability that the joint life status is		
	still active in <i>t</i> years' time, <i>ie</i> the	. n . n	
	probability that both x and y survive for	trx try	
	at least t years		
$_t q_{xy}^{-}$	Probability that the last survivor status		
	fails within <i>t</i> years, <i>ie</i> the probability	$t q_x t q_y$	
	that both <i>x</i> and <i>y</i> die in next <i>t</i> years		
$_{t}\rho_{xy}$	Probability that the last survivor status		
	is still active in <i>t</i> years' time, <i>ie</i> the	$1 - t q_x t q_y$	
	probability that at least one of x and y	$= {}_t p_x + {}_t p_y - {}_t p_x {}_t p_y$	
	survive for at least t years		
tq1 xy	Probability that life <i>x</i> dies first in the next <i>t</i> years	Assuming same age and mortality:	
		a^{-1}	
		$t \mathbf{q}_{1}^{1} - \frac{1}{2} t \mathbf{q}_{xx}$	
tq ₂ xy	Probability that life <i>x</i> dies second in the next <i>t</i> years	Assuming same age and mortality:	
		$a_{-} = \frac{1}{2} (a_{-})^2$	
		$t q_{2}^{2} = \frac{1}{2} t q_{xx}^{2} = \frac{1}{2} (t q_{x})$	

5 Joint Life Assurances

Symbol	Meaning	Calculation Method
A _{x:y}	Joint whole of life assurance	
	Assurance payments made at the end of year of	$1-d\ddot{a}_{x:y}$
	first death, whenever that occurs	
	Joint whole of life assurance payable immediately	$1 - \delta \overline{a}_{x;y}$ or
$\overline{A}_{x:y}$	Assurance payments made immediately on the first	$()^{0.5}()$
,	death, whenever that occurs	$(1+i)^{-1}(1-da_{x:y})$
$A_{\overline{x:y}}$	Last survivor whole of life assurance	$A_x + A_y - A_{x:y}$ or
	Assurance payments made at the end of year of	1- <i>d</i> ä—
	second death, whenever that occurs	$1 - uu_{x:y}$
	Last survivor whole of life assurance payable	
Ā—	immediately	$A_x + A_y - A_{x:y}$ or
x:y	Assurance payment made immediately on second	$1 - \delta \overline{a}_{x;y}$
	death, whenever that occurs	,
	Joint life n-year term assurance	
A 1	Assurance payment made at the end of year of the	$A_{x:y} - v^n {}_n p_x {}_n p_y A_{x+n:y+n}$
x:y:n	first death, provided that occurs within the next n	
	years	
	Joint life n-year immediately payable term	
Ā ₁	assurance	$\overline{A} = v^n - p \overline{A}$
x:y:n	Assurance payment made immediately on the first	7x:y nPx $nPy7x+n:y+n$
	death, provided that occurs within the next n years	
	Joint life n-year pure endowment	
A <u>1</u> x·v·n	Assurance payment payable at time n, provided	$v^n {}_n p_x {}_n p_y$
A.y.III	both lives are still alive.	
	Joint life n-year endowment assurance	
	Assurance payment made at the end of year of the	$A_1 + A_1$ or
A _{x:y:n}	first death, provided that occur within the next n	x:y:n x:y:n
	years, or at time n, provided both lives are still	$1 - da_{x:y:n}$
	alive.	
Ā _{x:y:n}]	Joint life n-year endowment assurance	$\overline{A}_1 + A_1$ or
	Assurance payment made immediately on the first	x:y:n x:y:n
	death, provided that occur within the next n years	$1 - \delta \overline{a}$
	or at time n, provided both lives are still alive.	

6 Joint Life Annuities

Symbol	Meaning	Calculation Method
	Joint life immediate annuity-due	
ä _{x:y}	Annuity payable in advance until the death of the first	Using PMA92/PFA92, tabulated at 4%
	life, x or y, whenever that occurs	
ä _{x:y:n}	Joint life n-year temporary immediate annuity-due	
	Annuity payable in advance until the death of the first	$\ddot{a}_{x:y} - v^n {}_n p_x {}_n p_y \ddot{a}_{x+n:y+n}$
	life, whenever that occurs, for a maximum of n years	
	Joint life immediate annuity	,
a _{x:y}	Annuity payable in arrears until the death of the first life,	$a_{x:y}-1$
	whenever that occurs	
a –	Joint life n-year temporary immediate annuity	n
^u x:y:n	Annuity payable in arrears until the death of the first life,	$a_{x:y} - v^n p_x p_y a_{x+n:y+n}$
	whenever that occurs, for a maximum of n years	
$\overline{\alpha}$	Joint life continuously payable immediate annuity	ä 05
u _{x:y}	Annuity payable continuously until the death of the first	$u_{x:y} = 0.5$
	lije, whenever that occurs	
_	Joint life n-year temporary immediate annuity	
a _{x:y:n}	Annuity navable continuously until the death of the first	$\overline{a}_{x:y} - v^n {}_n p_x {}_n p_y \overline{a}_{x+n:y+n}$
	life whenever that occurs for a maximum of n years	
	Last survivor immediate annuity-due	
ä	Annuity payable in advance until the death of the second	$\ddot{a}_{x} + \ddot{a}_{y} - \ddot{a}_{xy}$
х.у	life. whenever that occurs	~ y ^.y
	Last survivor n-year temporary immediate annuity-due	
$\ddot{a}_{\overline{x},\overline{y},\overline{n}}$	Annuity payable in advance until the death of the second	$\ddot{a}_{x\cdot n} + \ddot{a}_{y\cdot n} - \ddot{a}_{x\cdot y\cdot n}$
	life, whenever that occurs, for a maximum of n years	, , , , , , , , , , , , , , , , , , ,
	Last survivor immediate annuity	
$a_{\overline{x:y}}$	Annuity payable in arrears until the death of the second	$a_x + a_y - a_{x:y}$
	life, whenever that occurs	
	Last survivor n-year temporary immediate annuity	
$a_{x:y:n}$	Annuity payable in arrears until the death of the second	$a_{x:\overline{n}} + a_{y:\overline{n}} - a_{x:y:\overline{n}}$
	life, whenever that occurs, for a maximum of n years	
<u> </u>	Last survivor continuously payable immediate annuity	
u _{x:y}	Annuity payable continuously until the death of the	$a_x + a_y - a_{x:y}$
	second life, whenever that occurs	
	Last survivor n-year temporary continuously payable	
ā—¬	Annuity navable continuously until the death of the	$\overline{a} \neg + \overline{a} \neg - \overline{a} \neg$
x:y:n	Annually puyuble continuously until the death of the	x:n y:n x:y:n
	vears	
	/	$a_{y} - a_{xy}$
~		y cuy
$a_{x y}$	Reversionary annuity	$=(\ddot{a}_{y}-1)-(\ddot{a}_{x:y}-1)$
& .:	Annuity beginning on the death of life x, for the	$=\ddot{a}$, $-\ddot{a}$,
$a_{x y}$		y x:y
		$=\ddot{a}_{x y}$